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322. Calcuhtions of the Crystal Spectra of Benzene and 
Naphthalene. 

By D. P. CRAIG and J. R. WALSH. 
An El ,  state of benzene is split in the crystal into four components, three 

of them spectrally active. The splittings and intensity distribution for 
transitions to them are calculated according to perturbation theory by using 
methods discussed in earlier papers and now adapted to deal with a twofold 
degenerate upper state. Dipole sums have been found by two independent 
methods in good agreement with one another. 

Calculations are reported for crystal transitions in naphthalene corre- 
sponding to band systems observed in solution at  2200 A and 2750 A. Their 
assignments as long-axis and short-axis polarised respectively are confirmed 
by comparison of the calculated results with experiment and by analogy 
with anthracene. 

1. MOLECULES in crystals interact with forces which are small compared with intra- 
molecular forces and accordingly the energy levels of crystals can be calculated from, and 
uniquely related to, those of free molecules by perturbation theory. A number of such 
studies have been made, beginning with Davydov’s theoretical work and including, for 
example, the weak A,-Bz, system of benzene2 and two transitions of a n t h r a ~ e n e . ~ , ~  
Calculations are now reported for the intense system of benzene at 1790 and for two systems 
of naphthalene, at 2200 and 2750 A. The crystal spectrum corresponding to the intense 
benzene system has not hitherto been discussed theoretically; our naphthalene results 
have already been briefly r e p ~ r t e d . ~  

It is derived so far as symmetry is concerned 
mostly from Seitz and in other respects from Davydov and other authors already cited. 
A molecule will be supposed to have a ground state wave-function cp and a set of excited 
states cp?. The transitions in the free molecules from the ground state have transition 
energies Awf measured in the equivalent wave numbers and transition dipole moments 
M f  = eQr with the dipole lengths measured in Angstrom units. In the crystal there will 
be h such molecules in a unit cell each occupying a site designated by a subscript i = 
1, 2, . . h, and if the crystal consists of N molecules there will be N / h  unit cells numbered 
by a second subscript m = 1, . . N/h. Thus the symbol (~17,” refers to a molecule in its s-th 
excited state placed on the E-th site of the m-th unit cell. Where specification of the unit 

Fox and Schnepp, J .  Chem. Phys., 1955, 23, 767. 

Craig, J., 1955, 2302. 
Craig and Walsh, J .  Chem. Phys., 1956, 24, 471; 25, 588. 
Seitz, Ann. Math., 1936, 37, 17. 

We first restate the theory used briefly. 

l Davydov, Zhur. eksp. teor. Fiz., 1948, 18, 210. 

a Craig and Hobbins, J., 1955, 539, 2309. 



1614 Craig and Walsh:  Calcdations of the 

cell is unnecessary the second subscript is omitted. The Hamiltonian for the rigid lattice 
may be written 

. . . . . . .  (1) 
k =  1 1 > k  

in which Hk is the Hamiltonian for the k-th molecule in isolation and Vlk is the interaction 
energy between the molecules k and 1. Writing the crystal ground state wave function as 
a simple product of free molecule functions (2) 

. . . . . . . .  @ G = ( P 1 ( P 2 . . " P N  * (2) 

- (3) 

we find for the energy to the first order the expression (3) : 

E G  = NU' + zz/(Pl(Pkvlk'Pl(Pkdr * * 

Excitation of the 9-th molecule of the i-th set to its r-th excited state is represented in a 
localised excitation wave function (4) : 

dip' = ( P i 1 9 1 2  * (Pip' - * - (Ph,X]h * - . . 0 - (4) 
If all molecules are of one crystallographic species this belongs to an N-fold degenerate set 
with respect to the N-excitation sites: the overall degeneracy is the product of this site 
degeneracy and that of the molecule wave function. Where there is more than one 
crystallographic species the degeneracy of the functions (4) extends to the members of each 
species but not, of course, outside it. Approximate eigenfunctions for excited states of the 
crystal are linear combinations of the localised excitation functions (4), and the problem of 
finding the coefficients for them can always be partly solved, and sometimes completely, 
by using symmetry arguments. 

2. Symmetry Considerations.-The Hamiltonian (1) is invariant under the operations of 
the space group and the setting up of crystal wave functions is simplified by making them 
transform like irreducible representations. The infinite crystal is simulated by applying 
cyclic boundary conditions to the finite crystal of N molecules, the group of which is the 
finite space group of Winston and Halford.' This contains as an invariant sub-group the 
finite translation group consisting of the lattice translations (5) : 

. . . . . . . . .  nit, + n2t2 + n3t3 (5) 

where the t's are primitive lattice vectors and the n's integers which, in (5), generate from 
a chosen molecule a set of molecules translationally equivalent to it. 

Using the functions (4), we now set up normalised linear combinations (6) of 
translationally equivalent molecules with irreducible symmetry under the translation 
group : 

@i'(k) = 2 / ( h / N )  2 exp (ik . rip) #ipr . . . . . .  
LP 

rip is the position vector of the +-th molecule of the i-th set, and k is a wave vector; k may 
be regarded as a vector in reciprocal space. Its components along the three crystal axes 
a, b, and c are limited, for example, along a, to 2 x 0 / ( M u .  a) for 0 = 0, &I, &2, . . M,/2 
where a is the lattice spacing and Ma the number of translationally equivalent molecules 
along the a axis; M,MbM, = N / h .  

The invariant sub-group of translations is associated in the space group with the factor 
group or unit-cell group, and reference will be made also to two other groups, namely the 
site group and the group of the wave vector k. The factor group consists of operations 
which leave the Hamiltonian for the molecules in a unit cell unchanged, either by inter- 
changing the molecules or by mapping them on themselves or their translational 

IYinston and Halford, J .  Cltcm. Pliys., 1049, 17, 607 
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equivalents. In  the most general case each factor-group operation carries a chosen 
molecule into another crystallographically equivalent to it. Then, if all the molecules in 
the unit cell are crystallographically equivalent the order of the factor group equals the 
number of molecules in the unit cell.* In  this case the site group, which consists of those 
factor-group operations which leave the Hamiltonian for one molecule unchanged, contains 
only the identity. In  more special cases some factor-group operations permute the 
molecule Hamiltonians Hk while others leave them invariant ; the latter operations constitute 
the site group. The number of molecules in the unit cell then equals the number of oper- 
ations effecting distinct permutations in the factor group plus one, i.e., its order divided 
by the order of the site group. Thus, in the naphthalene crystal there are two molecules 
per cell and the factor group CZh is of order four. The identity and inversion operations 
self-transform the molecules, giving a site group Ci of order two. 

To describe the group of the wave vector we must consider the transforms of the functions 
(6) by a factor-group operation F. In  accordance with what has just been said, let us 
suppose that F carries a molecule of the i-th translationally equivalent set into the j-th 
and the f-th unit cell into the q-th. Then 

F@>i'(k) = $/(/%/A') 2 exp (ik . rj,J $j; . . . . . . (7) 
P 

This is identical with the result of the operation F applied to the vector k, the r vectors 
being altered only to apply to the new site : 

F@i'(k) = @j'(Fk) . . . . . . . . (8) 

Thus the factor-group operations generate a set of wave vectors from a chosen k. This set, 
radiating from a point of reciprocaI space, is called a star by Wigner et aL8 In  general 
each factor-group operation generates a different Fk and, even if inversion of space co- 
ordinates is not a factor-group operation the negative of each wave vector is included in 
the star as a result of symmetry to time inversion. Thus the most general star consists 
of as many vectors as there are factor-group operations, or twice as many, depending upon 
whether space inversion is, or is not, an element of the factor group. In  special cases the 
wave vector k is invariant to certain of the factor-group operations; these constitute a 
sub-group called the group of the wave vector. The functions (6) which transform like the 
k representation of the translation group can in addition be combined to transform like 
representations of the group of the wave vector. In  the case k = 0 the wave vectors on 
the left- and the right-hand side of (8) are the same, so the group of the wave vector is the 
point group isomorphous with the whole factor group, and crystal wave functions can be 
classified according to factor-group representations. This is of prime importance for 
optical transitions which are mainly to states of k = 0. On the other hand, for the most 
general k the group of the wave vector consists only of the identity and time inversion and 
no subclassification of the functions (6) can be made. 

The energy levels of the crystal are found by diagonalising the energy matrix of the 
Hamiltonian (1) in the basis of functions (6). It is somewhat more convenient to calculate 
directly the transition energies by subtracting the ground-state energy (3). The required 
transition energies to the first order can be found from the secular equation (9) : 

* Where the unit cell contains more than one crystallographically distinct molecule each is considered 
separately in the same way under the factor-group operations. 

Rouckaert, Smoluchowski, and FVigner, Phjis. I ~ c v . ,  1936, 50, 68. 



1616 Craig and Walsh:  Calculations of the 
and to higher order of approximation by including in the basis functions corresponding to 
different free-molecule excited states as discussed in ref. 4. In the diagonal places in the 
determinant we find 

Awr + Dr + c' exp [ik . (rip - riq)]Iip,iT - AE . . . . (loa) 
P 

and in the non-diagonal 

where 
2 (exp [ik . (rip - rjP)]Iip,jT . . . . . . W b )  
9 

and the primed sums omit j5 = q. The degree of the secular equation is equal to the 
number of molecules in the unit cell but it can be factorised into smaller blocks by using the 
group of the wave vector and, in the case k = 0, using the factor group. 

3. Application to Benzene.-Benzene crystals are orthorhombic with four molecules in 
the unit cell. These will be numbered as follows: I is at  (0, 0, 0) and the others are 
generated from it by applying the factor-group operations as defined in Table 1. A set of 
rectangular axes is assigned to I: the z axis is normal to the molecular plane with its 
positive direction making acute angles with the positive directions of the crystal axes a, b, 
and c; they axis is the intersection of the molecular plane with the ab crystal plane with 
positive direction making an acute angle with the positive b axis, and the x axis is perpen- 
dicular t o y  and z and makes acute angles with a and b but not c. The axes in the other 
molecules are the transforms of those in I by the factor-group operations. Table 1 sets out 
the direction cosines of molecular to crystal axes derived in this way from the results of 
Cox and Smith.9 

TABLE 1. Direction cosines 

Molecular Method of 
t y p e  generation 

I E 

I1 C,e 

111 c, 

of molecular axes with respect to crystal axes in 
benzene crystals. 
Crystal Direction cosines 

axes x V z 
a 0.7109 0.6365 -0.2992 
b 0.2000 0.9541 0.2229 
c -0.7450 0 0.6671 
a -0.6365 0.2992 -0.7109 
b -0.2000 -0.9541 -0.2229 

0.667 1 
a -0.6365 0.2992 - 0.7 109 
b 0.2000 0.9541 0.2229 
C 0-7450 0 -0.6671 
a 0.6365 -0.2992 0.7100 
b -0*2000 -0.9541 -0.2229 
c 0.7450 0 -0.6671 

c -0.7450 0 

For the calculation of optical transitions the energy levels belonging to k = 0 are the 
important ones. The corresponding wave functions transform like representations of the 
factor group, as explained in the last section, and are given in the basis of the functions (4) 
by the following expressions (1 1) : 

ya = (1/2) (+IT + +If + +ElT + +IVf) 

yb = (+-+-) ys = (+--+) y' = (++--) . . . ((11) 
= (++++) 

The functions y transform under the twofold rotations in the same way for any molecular 
state 9' and, because the site group contains inversion, the g or cu character is the same as 

Cox and Smith, Nature, 1954, 173, 75. 
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that of the molecule wave function. The complete crystal wave functions for k = 0 are 
sums of the expressions y over all unit cells. The factor-group representations for a 
molecular u wave function are set out in Table 2. 

TABLE 2. Factor-group representations and polarisations for crystalline benzeme (k = 0) .  
Transition dipole 

Wave function Deh representation direction 
Y a  A I U  (Forbidden) 
YS B 2 U  b 
YS BIU a 
Y E  BlU C 

The transitions referred to are from the ground state which is g, and there are no allowed 
transitions leading to excited states of the crystal corresponding to g excited molecular 
states. For a non-degenerate molecular wave function (pr  there is just one crystal wave 
function belonging to each factor-group representation, but for a doubly degenerate 
molecule wave function there will be two, and these two will be split by the crystal field as 
we shall see for the El,  state of benzene. 

The energies of the crystal levels relative to those of free molecules depend, a t  least 
when the levels give rise to intense absorption systems, on resonance effects between 
molecules. For 
k = 0 the magnitudes depend on sums of integrals of the intermolecular potential energy 
Vkl between all molecule pairs kl. The symmetry relations in Table 1 reduce the integrals 
to a small number of different types each involving a selected molecule which we choose 
to be a member of the set translationally equivalent to I. Written in full a representative 
integral sum is (12) : 

These have been discussed in Section 1 and more fully in refs. 1 and 3. 

The superscripts refer to the x component of the degenerate excited state 'pf as will be 
explained later. The integral sums occur in combinations determined by the appearance 
of the functions $ in (11) and defined below; the expressions are simplified by giving only 
that subscript which refers to the set of molecules over which the sum is taken. 

13 

Analogous combinations occur in the energies of, and have the same sequences of signs 
as, the wave functions specified by subscripts p, 6, and E. 

For the doubly degenerate El, state of benzene there are two primitive crystal wave 
functions of each factor-group representation, and hence two distinct crystal energy levels, 
found by diagonalising a two-rowed secular equation. The elements of the four such 
secular equations are formally the same. For the A1, factor group representation for 
example : 

For the mean energy displacement from a reference zero equal to Awf + D we have 
(1/2)($m + Y'Y), and the two components are each separated from this by 
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In the dipole-dipole approximation the expression for a representative term occurring 

in the sum $"y is as follows, for molecules l and m: 

2 cos e l l y  cos ornp - cos eb2x cos e,g - cos el,$ cos ody 

- cos e$ cos Om2' - cos O13Y cos . (14)  

rzrn is the distance between the centres of the molecules, Mx is the transition dipole moment 
for the transition to yz, and Oilx is the angle between the transition moment and the line of 
centres of the molecules. Axes 2 and 3 are perpendicular to the line of centres. 

It is well known 
that an El, wave function in group D,, can be expressed in two orthogonal functions which 
depend on the angle round the z axis according to the sine and cosine of 2&/6 when k 
numbers the vertices of the hexagon from 1 to 6 .  With the numbering in the diagram 

the transition dipole moments from the ground state lie respectively 
along the -q and 5 directions for the sine- and cosine-dependent functions. 
By taking general linear combinations in terms of an angle parameter 
x, we get two orthogonal functions with angle dependence given by 
(cos x . cos 2xk/6 + sin x . sin 2xk/6)  and (-sin x . cos 2&/6 + cos x . sin 2xk/6) ,  

4 the transition dipoles for which are rotated through x from those for 
the original. Thus in an isolated molecule the transition moment to 

the degenerate Elu state can be regarded as having components along any two axes at 
right angles in the molecular plane. We shall take the wave-function component (pY 

to be that which has its transition dipole moment along the line of intersection 
of the molecular plane with the ab plane of the crystal, i.e., the y axis already defined, 
and 'px similarly. 

The first stage of the numerical work is the computation of the dipole-dipole sums, 
given in Table 3 for a transition dipole length of 1 A. Values in the Table have been 
computed in two distinct ways. The results marked (a)  are sums over an infinite sphere 
by the Ewald-Kornfeld 10 method, and ( 6 )  are obtained by direct molecule-by-molecule 
evaluation over a sphere of radius 20 A. We discuss and compare these methods of evalu- 

We must now consider the transition moments for the free molecule. 

5 6: 
3 

TABLE 3. Benzene crystal dipole-dipole sums (cm.-l/Q2). 
Dipole Molecule sites 
axes I, I I, I1 I, I11 I, IV 
(x ,  X )  (a) -386 -112 -791 -729 

(b )  -415 - 92 -769 -771 
( y , ~ )  ( a )  727 -2679 -1723 1341 

( b )  790 -2629 -1713 1405 
(z,z) (a )  -341 185 -955 -553 

(a) -375 220 -950 -587 

Dipole 
axes I, I 
(xs Y) ( a )  205 

( b )  233 
( x ,  z )  ( a )  207 

(b) 181 

( b )  260 
(31, 2) (4 228 

Molecule sites 
I, I1 I, I11 I, IV 
-94'7 -25 275 
-934 - 8 289 
1340 -738 795 
1306 -818 833 

-1058 -27 307 
-1041 - 7 323 

ation later. The sums (a)  are used in the calculations of the crystal energy levels given in 
Table 4 .  These are characterised by the displacement of each level from a zero given by 
Awr + D which is expected to be close to the free-molecule excitation energy. There are 
two levels belonging to each symmetry species labelled (i) and (ii), separated by an amount 
which measures the degree to which the crystal field splits the free-molecule degeneracy 
in the several symmetries. 

The transition intensities in the crystal are conveniently considered in two steps : 
first, the sharing of the total intensity between the three axes of polarisation, and secondly, 

lo Kittel, " Introduction to Solid State Physics," John Wiley, New York, 2nd edn., 1954, p. 347. 
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the subdivision between the two components polarised along each axis. In first-order 
theory the partition between the three axes is determined by their projections on the active 
molecular axes. Denoting the transition dipole length projected along the crystal axes 
by Qa, Qa, and Qc, we find that the squares of these quantities are in the ratios 1 : 1-92 : 1.12. 
If the splittings are taken to be small compared with the transition energy Awr, these are 
also the ratios of oscillator strengths along the axes. To determine absolute intensities 

TABLE 4. Calculated positions of crystal levels of benzene for  k = 0 relative to 
Awr + D (cm.-l/Q2). 

a(A,ul ,B(Bau) W l U )  ( B 3 U )  4AlU) B(Bau) 8 (BIU) ( B d  
-2693 -914 -514 - 1906 -1659 +920 +6772 +1358 

we use the formula forf, the oscillator strength,f = A . AE . Q2, where AE is the transition 
energy in Rydberg units, Q the transition dipole length in atomic units, and A the square 
of the cosine of the angle between Q and the polarisation direction of the incident light. In  
solution, A averages at 113; in the crystal it can be found from Table 1. The totalfvalue 
summed over the three axes is evidently three times the solution value. 

The calculated structui e of the crystal spectrum 
corresponding to a vapour AIl-Elu system 
of benzene, showing splittings, polarzsation 
directions and transition dipole lengths in 
A. T h e  values ab#lv to a transition of 
intensity with dipoie iength 1A 
the two degenerate components. 

in each if 

-2000 0 2000 6000 

The partition of these intensities between the two components along each axis can be 
determined from the solutions of the two-rowed secular equations (13) which give the 
coefficients for the mixing of q2 and (py in the crystal eigenfunctions. The results are 
expressed as the ratios of the squares of transition moments. The values found (the 
higher frequency first) are: a polarised 0.057 : 1; b 5.94 : 1;  c 8.72 : 1. The Figure 
illustrates the results, showing the splittings and intensity distribution in an intense 
A1,-E1, system. 

We have discussed the influence of crystal forces on the degenerate El, state of benzene 
without referring to Jahn and Teller's theorem l1 which shows that electronic degeneracy 
and a non-linear nuclear arrangement are incompatible. According to Jahn and Teller 
the regular hexagonal shape of a free benzene molecule must collapse in a degenerate state 
into an elongated hexagon with dimensions governed by the balance reached between 
a-electron forces tending to preserve regularity and x-electron forces opposing it. In the 
crystal we treat the levels appropriate to molecules in which the regular hexagon is 
preserved, for the following reason. The degeneracy having been removed by crystal 
forces even in the regular shape, there will be no first-order Jahn-Teller effect, and its 
vestigial influence on shape will be of the same order as that of the crystal forces them- 
selves and therefore properly to be neglected in the present approximation, the essence of 
which is that the time constant for nuclear displacements is long compare with that for 

The frequency zero is Awr + D. 

l1 Jahn and Teller, Proc. Roy. Soc., 1937, A ,  161, 330. 
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exciton transfer; this being so, the crystal levels are predominantly determined by the 
molecular dimensions in the ground state. 

4. Application to Naphthalene.-The considerations of molecule and crystal symmetry 
for naphthalene are identical with those for anthracene already given in detail3 More- 
over, calculations for naphthalene have already been reported briefly and will here only be 
summarised. The space group is C$jh with two molecules in the unit cell; for each k value 
a free molecule state gives rise to two crystal levels. For k = 0 transitions are allowed to 
both components of a at state, polarised in the one case in the ac plane and in the other 
along the b axis. Since naphthalene crystallises with a prominent (001) plane, measure- 
ments are made along the a and b monoclinic axes. Their energies may be calculated in 
relation to the free-molecule transition energy by using the intermolecular integral sums 
given in Table 5, computed in the dipole-dipole approximation. The in-plane transitions 

TABLE 5.* Naphthalene crystal dipole sums (cm.-l/Q2). 
Dipole Molecule sites Dipole Molecule sites Dipole Molecule sites 

(y, y )  (a)  555 ( a )  1350 (2, Z) (a)  -789 (a )  84 (y ,  z )  (a)  323 ( a )  1160 
(b )  581 (b )  1450 (b )  -854 (b )  90 (b )  366 ( b )  1164 

axes I, 1 I, I1 axes I, 1 I, I1 axes 1, I I, Ir  

* Calculations based on the crystal structure reported by Abrahams, Robertson, and White, Actn 
Cryst., 1949, 2, 238. 

in naphthalene have their moments parallel to the longer in-plane axis (y-polarised 
A,-Bzu) or along the shorter (z-polarised A,-B1,) in the recommended convention.12 The 
left-hand column of Table 5 lists the combinations of transition moment directions in the 
two molecules, and the sums taken over equivalent and non-equivalent molecule pairs are 
given in the right-hand columns; values labelled (a) are Ewald-Kornfeld (EK) sums taken 
over the infinite sphere, and those labelled (b)  are direct sums (DS) over a 20 sphere. 

TABLE 6." 
Splitting Slllft 

Long-axis ( y )  poln. A,-B,, .................. $6570 -2740 +9310 +1910 
Short-axis (2) poln. Ag-Blu .................. -2430 -3010 + 580 -2720 

Assignment AEa (cm.-l) AEP AEa-AEB (AEo: + AEB)/Z 

* The minor differences between these results and those given in reference (5 )  are due to the 
substitution of EK values for the slightly different DS ones. 

Naphthalene has three known singlet band systems in the quartz ultraviolet region, 
at 2200 A (f = 1.7), at  2750A (f = O - l l ) ,  and at 3200 A (f = 0.002), of which the last is 
too weak to be treated in the dipole-dipole approximation. Table 6 refers to the first of 
the three systems and gives values of the Davydov splitting and shift based on the EK 
values in Table 5 and measured relative to Aw + D as in expression (10a). The superscripts 
a and 8 refer respectively to a and b polarised absorption. Experimental evidence to 
determine the polarisation of this system is not available but analogy with the strongly 
similar anthracene absorption system and indirect evidence to be discussed based on the 
influence of the strong system on the weaker one at  2750 A make it evident that the 2200 
system is long-axis polarised. 

In  the weaker system at  2750 A there are two features of the crystal spectrum not found 
in strong systems, again as in the similar system of anthracene at  3800 A. The transition 
dipole length calculated from the observed oscillator strength in solution is 0.53 A, so that 
the Davydov splitting will not exceed 400 cm.-l whatever the assignment. This is 
substantially smaller than the vibrational spacing of the progression, so that one cannot 
treat the electronic intensity as concentrated at  one frequency but must consider each 
vibrational-electronic level of the progression separately. When the splitting energy 

I t  Report of Joint Commission for Spectroscopy, J .  Chenz. Shys . ,  1955, 23, 1997. 
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is small compared with the progression interval, the splitting actually observed depends, 
not on the total intensity of the band system, but on that part of it present in the particular 
vibronic transition. For somewhat greater splittings, interactions between different 
vibrational sub-levels become significant, leading to observed values between the limiting 
case just mentioned and those for large intermolecular interaction in which the band 
system behaves as if it were concentrated at  a single frequency. This is the first of the new 
features of weaker systems ; the second is that, first-order effects becoming rapidly very 
small, second-order disturbances caused by nearby strong systems become relatively 
important, leading to modified splittings and transfers of intensity between the weak and 

TABLE 7. 2750 A System assigned A,-Bz, ( y  Polarised). 

n 
0 
1 
2 
3 
4 

Conc. system 

n 
0 
1 
2 
3 
4 

Conc. system 

First- 
order 

splitting 
115 
205 
196 
154 
99 

767 

a 
Component 

(cm.-l) 
39 

h v  + 75 
2hv + 78 
3hv + 61 
4hv f 37 

306 

b 
Component 

(cm.-l) 
- 54 

h v  - 93 
2hv - 87 
3hv - 73 
4hv - 61 
- 320 

Splitting 
to the 

second order 
93 

168 
165 
134 
98 

626 

TABLE 8. 3750 A System assigned Ag-B1, ( z  polarised). 
First- 
order 

splitting 

a b 
Component Component 

(cm.-l) (cm.-l) 
0 - 57 - 60 

14 h v  - 96 h v  - 102 
11  2hv - 87 2 h ~  - 95 
8 3hv - 67 3hv - 81 
5 4hv - 45 4hv - 67 

48 - 336 - 352 

Splitting 
to  the 

second order 
3 
6 
8 

14 
12 
16 

Polarisation 
ratio, 
a : b  

1 : 1-2 
1 : 1.5 
1 : 2.1 
1 : 3.4 
1 : 7.8 
1 : 1.5 

Polarisation 
ratio, 
a : b  

1 : 3.1 
1 : 2.8 
1 : 2.4 
1 : 2.0 
1 : 1-2 
1 : 2.8 

the strong system. Now, however, in contrast to the first-order term, and because the 
vibrational spacing in one system is usually less than the separation of two electronic 
systems, the magnitude of the second-order term depends mainly on the total intensities 
in the electronic systems. Thus one sees that such effects will rapidly overtake first-order 
effects in weak systems, especially when there is a widely spread vibrational structure. 
Furthermore, the intensity ratios for different crystal axes are unaffected in the first order 
and so show a sharp dependence on the second-order terms. All of these features were 
recognised and discussed in connection with the spectrum of anthracene* and in the 
preliminary report on naphthalene and need not be insisted upon here. They have also 
been discussed recently by Simpson and Peterson l3 in a more general context. 

The intensity ratio a : b is 4.2 : 1 for a long-axis transition, and 1 : 7.3 for a short-axis 
transition, from the projections of molecular axes on crystal axes. The measured value l4 
for the onset of the system is about 1 : 3. This value depends both on the polarisation 
properties of the transition at  2750 A and on that a t  2200 A which under the influence of 
neighbour molecules imparts its own polarisation to the weaker system to some extent. 
One readily finds that neither assignment for the weak system, coupled with a short-axis 
intense system, can lead to an intensity ratio near 1 : 3. The intense system must therefore 
be long-axis polarised as is its analogue in anthracene.3 Accordingly, we list results in 
Tables 7 and 8 calculated for the members of the main progression ( h v  = 1430 cm.-l) in 
the 2750 A naphthalene system separately for the two in-plane polarisation directions, but 
assuming in the derivation of both a long-axis intense system at 2200 A. 

la Simpson and Peterson, J .  Chem. Phys., 1957, 26, 588. 
l* Craig and Lyons, Natuw, 1952, 169. 1102, 
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Values of the first-order splitting given in the second column for the several vibrational 

sub-levels may be compared with that for a concentrated system which has the same total 
intensity a t  a single frequency; their sum is equal to the concentrated-system value, but 
individually they are, of course, very much less, and the change in the second order (col. 5) 
is relatively a small one. Thus, in accordance with the earlier qualitative considerations, 
the concentrated-system approximation breaks down completely for weaker systems, 
particularly for the calculations of splitting; the average intensity ratio, on the other 
hand, differs much less from the concentrated-system value. 

Experimental values of the splitting in the 2750A system are not known, but the 
measured polarisation ratio l4 of 1 : 3 indicates the assignment Ag-B1, short-axis polarised, 
as for the corresponding anthracene system. 

5. The Dipole Sums.-The quantitative results, as distinct from the qualitative features 
of intermolecular interactions in crystals, depend on the values of the dipole sums listed in 
Tables 3 and 6. Two important matters need to be mentioned in relation to them, one 
concerned with the method of evaluation and the other with the shape of the region over 
which the sum is taken. We postpone the second, and consider how the summation can 
be made for the special case of a sphere. Individual terms are given in expression (14) , 
and the term may be found by term-by-term evaluation through a sphere of some chosen 
radius. If the radius of this sphere is big enough, the effect of a spherical shell of molecules 
external to it becomes that of a uniformly polarised shell which, according to classical 
electrostatics, contributes nothivg to the field a t  the centre. In practice a radius of 20- 
30A gives an adequate convergence to the limiting value of the sum except in certain 
cases where a molecule which happens to make an exceptionally large contribution lies very 
close to the surface of the spherical region. The direct summation (DS) procedure is, of 
course, highly susceptible to such accidents of structure, and the Ewald-Kornfeld (EK) 
method for summation over an infinite sphere by a transformation leading to a rapidly 
convergent summation is in principle to be preferred. In practice the EK method is a 
little more laborious to apply than direct summation within a 20 k sphere, but certainly 
less so than a 30A summation; moreover, the errors of the DS summation accumulate 
with the number of individual interactions included, so that no purpose is served in extend- 
ing it to a large radius. The comparisons between the two methods in Tables 3 and 6 
show a satisfying agreement which confirms the general correctness of the values given ; 
for calculations of the crystal spectra we have used the EK values. 

It was pointed out by Fox and Yatsiv 15 that the dipole-dipole summation for k = 0 
is identical with a problem familiar in electrostatics in relation to permanent rather than 
transition dipoles, namely, that the sum depends on the shape of the region over which 
interactions are considered, and therefore that some care must be taken in interpreting 
experimental results by comparing them with calculations of what is a special case, namely 
a sphere. However, in the one case (anthracene) in which results are available for an 
intense system the interpretation is unambiguous because the effects of change of shape 
on the calculated spectrum are too small to blur the distinction between long- and short- 
axis polarisations and, this fact being noted, we can further see that in this case the 
experimental results are fitted better by calculations for a sphere than for any substantially 
different shape. These facts are evident in the results collected in Table 9 for the crystal 
spectrum related to the intense system of anthracene observed at  2500 A in the vapour. 
To deal with the change of shape we proceed conventionally to consider the field acting on 
a molecule to be made up of three parts : first, the cavity field produced by the molecules 
contained in a large spherical cavity, then the fields associated respectively with the inner 
and outer surfaces of a uniformly polarised medium surrounding the cavity, the outer 
surface being that which defines the volume through which the summation is taken. The 
polarisation P of the medium is M / r  where M is the transition dipole moment and I' the 
volume of the unit cell of the crystal. The field of the inner (spherical) surface is 4 x P / 3 ,  

l6 Fox and Yatsiv, J .  Chem. Phys., 1956, 24, 1103. 
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that of the outer depends on its shape; for a sphere it is -4xP/3,  for a thin slab with P 
normal to the plane sides it is -4xP,  and with P parallel to the sides it is zero. For a 
transition dipole length of 1 and with use of the anthracene unit cell volume of 474-2 A3, 
we find that the energy of a dipole of length 1 A in the polarising field is -1026 cos 8 in 
wave-number units, where 8 is the angle between the dipole and field directions. This 
allows the results for cases A and C in Table 9 to be built from those for B. The experi- 
mental results are those of Craig and hob bin^,^ and the calculations refer to shapes as 
follows: A and C are thin slabs with polarisation normal and parallel respectively to the 
plane sides, and B is a sphere. AEa refers to the displacement of the a-Dolarised comDonent 

AEa 
Shape (cm.-l) 

A 
B + 12,000( -4700) 
C + 1260( - 6900) 

+ 33,300 ( - 380) 

Exptl. (2500 A system) - + 13,000 

A 
B 
C 

+24,400( +2100) 
-1- 6600 ( - 2400) 
- 2300 ( - 4700) 

TABLE 9. 

AEB 
(cm.-') 

A nthracene 
- 3900( + 11,600) 
- 4250( - 5700) 
-4400( -14,400) 

N - 3000 

Naphthalene 
- 1900( + 11,200) 
-2700( -3000) 
- 3200 ( - 10,100) 

Splitting Shift 
AEa - AEB (AEu + AES)/2 

(cm.-') (cm.-l) 

+37,300( -12,000) +14,700(+5600) 
+16,200(+1000) +3850( -5200) 
+5700(+7500) -l600( -10,700) - + 16,000 - + 5000 

+26,300(-9100) +11,300(+6600) + 9300 ( + 600) + 800 ( + 5400) 
+ 1900( - 2700) 
-2800( -7400) 

from the vapour value and the splitting is made positive when the a component is at higher 
frequencies than the b. The values in parentheses refer to short axis polarised molecular 
absorption. It is apparent that the observed value of the splitting is incompatible with a 
short-axis transition irrespective of assumption about shape, and, moreover, the sphere 
values fit better than either extreme departure from the spherical. 

We are inclined to think that the difficulty over shape dependence will not arise when 
allowance is made for the fact that, a t  distances comparable to the length of the absorbed 
light wave, the intermolecular potential energy is not the static but the retarded potential.l6 
It is certain that a t  such distances the interaction energy will not follow the static inverse- 
cube law and therefore that the analogy with the problem of permanent dipoles breaks 
down. The explanation may involve a cutting-off of the interaction at distances of the 
order of a wavelength, leading to a shape-independent sum. This is to be taken up in a 
later paper. 
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